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ABSTRACT

Efforts to increase the cost effectiveness of future lunar and planetary
rover missions have led to the mobile lander concept, which replaces the land-
ing legs of a soft-lander craft with a compact mobility system of sufficient
strength to withstand the landing impact. The results of a mobile lander
conceptual design effort based on existing NASA -Viking '75 hardware are
presented. The elastic loop concept, developed as a post-Apollo rover tech-
nology, is found to meet stringent stowage, traction, power and weight require-
ments.

INTRODUCTION

Future rover missions to the moon or to Mars must promise ex-
ceptional returns on the investment in order to successfully compete for
funding in the constrained fiscal environment of the years ahead.

Mars exploration will intensify dramatically in mid-1976 when two
stationary NASA-Viking spacecraft are expected to soft-land on the red planet
and perform biological, photographic, geological and meteorological experi-
ments at their landing sites, However, such localized spot checks can only
scratch the surface of exploring a planet. The question arises: What type of
follow-on mission will provide the highest and most cost effective scientific
return after the first successful soft landi.gs at isolated sites ?

Through early 1974 NASA inhouse studies (Ref. 1) as well as several in-
dustry projects by Martin-Marietta Corporation (MMC) (Ref.2) and by
Messerschmitt -Boelkow -Blohm (MBB) (Ref. 3) pointed toward additional lander
missions incorporating a small roving vehicle that would be stowed on top of
and .leployed from a slightly modified lander craft. The existing Viking Mars
Lander and its entry capsule can accommodate four -wheeled rovers of 120 to 180
cm length and wheel diameters of 48to 56 cm, where thelargersize rover would
require folding hinges for stowing the chassis inside the existing Viking cap-
sule, A medium rover of 100 kg mass (Ref. 2) and an autonomous rover of
180 kg mass were studied in some depth (Ref, 3),

NASA estimates of the development cost of a piggyback rover were $80
million, which is considcred to be too high for funding in the near future in
view of the present constrained fiscal environment. Efforts to win the par-
ticipation of the European Space Research Organization in a cost-sharing
program for rover development were not successful. '
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TIIE MOBILE LANDER CONCEPT

Background and Basic Design F eatures

In efforts to improve the cost-effectiveness of planetary rovers, the
Martin-Marietta Corporation (MMC) reexamined the idea of a mobile lander
after earlier studies to mobilize the entire Viking Lander by conventional
wheels had shown negative results (Ref.4). NASA's Marshall Space Flight
Center (MSFC), which was responsible for the Apollo Lunar Roving Vehicle
development, was consulted by MMC in a search for lightweight wheels,
tracks or rollers of high flotation. NASA-MSFC recommended use of elastic
loops, which had been developed by Lockheed Missiles & Space Company in
Huntsville under partial NASA-MSFC sponsorship for post-Apollo rover mis-
sions (Refs.5 and 6). In design studies performed by Lockheed during the
summer of 1974 in cooperation with MMC under NASA guidance the feasi-
bility of mobilizing an entire Viking lander with minimum modifications to
the lander and entry system was demonstrated. A candidate Viking mobile
lander configuration is shown in Figure 1.

The lander's landing pads are replaced by a pair of elastic loops at the
tront (Figure 2) and single elastic loops at each rear leg. The elastic loop
suspensions consist of one-piece self-supporting bands of high strength ma-
terial and provide a large groundcontactarea with minimum stowage require-
ments, Their advanced state of development played a vital role in making
the mobile lander concept credible. The following design guidelines had
been established:

e The mobility system will attach to a landing gear similar to that of
the current Viking '75 Lander and will be stowable in the volume
available within the Viking '75 entry capsule.

e The mobility system will be deployed by the landing gear system.

o The lander craft will land on the mobility system. Landing loads
will be transmitted through the carriages of the mobility system,

which will be protected from the initial touchdown shock by shock
absorbing pads.

e The ground contact area of the operational mobility system will
be sufficient to limit sinkage in Martian loess material to 4 cm.

The mission duration after landing will be 180 days.

e The mobility system will be designed for a range of 150 km and
for night and day operation (temperature extremes -84°C < T <
+65°C).

The development cost for a mobile lander based on an existing station-
ary lander craft has been estimated to be only one third of the cost of an
autonomonus ''piggy-back' roving vehicle, A mobile VikingLander mission
has thaorefore been endorsed by NASA's Director of Planetary Programs ay

the logical next step in Mars exploration after the 1976 Viking landings
(Ref. 7).
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In the following sections major results of LMSC's design effort on a
Mobile Lander based on the existing Viking landing craft will be summarized.

MOBILITY SYSTEM DESIGN

Selection of Concept

Sincc the mobility system of a mobile lander should fic with:n the aero-
shell of an existing lander craft and take up not much more space than the
landing legs which it replaces, compact stowage is the major design require-
ment. However, the ground contact area must be sized to ascertain sufficient
traction and acceptable sinkage in the worst type of expected soil conditions.
In a comparison of stowage volume, weight and mechanical complexity of
wheels, tracks and elastic loops for specified footprint requirements, elastic
loops and tracks are found to be substantially more compact than wheels.
Elastic loops have the further advantage of lighter weight, simpler design
and lower internal power losses over tracks as was demonstrated in NASA-
sponsored prototype development and test programs (Refs. 5 and 8). A
small three-loop test vehicle (Figure 3) built by Lockheed for NASA-MSFC
demonstrated excellent rough-terrain mobility in soil bins and on nbstacle
courses, Yaw steering of the single loop,augmented in tight turns by differ-
ential speed control of the other loops,was found to provide good energy-
saving steering response, A three-loop configuration with yaw steering of
the front loop was therefore selected for the preliminary design. The three-

s legged Viking lander represented a perfect match for this configuration.

Loop Sizing

Extensive performance tests of elastic loop prototypes at MS*C's
Wheel -Soil Interaction Test Facility and at the U.S. Army Engineer Water-
; ways Experiment Station (Ref, 8) in lunar soil simulant provide a reliable
basis for loop sizing. Loop sizes which satisfy the footprint requirements
: for the maximum landed mass of a 1979 Viking mission and yet allow stowage
within the existing Viking entry capsule are listed in Table 1.

The penalty in weight, complexity and tractive efficiency of a dual-loop
configuration could be justified for the front leg, which favors a short pair of
loops for stowage and for yaw steering. For the rear legs, which do not re-
quire yaw steering, single loop support is more attractive.

Loop Fatigue Considerations

The two 180-degree sections of an elastic loop must provide sufficient
bending stiffness to support the load without excessive deformations. Ap-
proximate stress-deformation formulas were derived based on a simplified
theory which treats deformations of the transversely curved loops as
inextensional bending distortions.

The specific loop strength is primarily dependent upon the flexural
fatigue strength o of the loop material evaluated for the required number
of load cycles (2.3 x 105 cycles over 150 km range). Of several candidate
loop materials glass fiber reinforced epoxv and titanium alloy ranked
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highest in specific strength. Glass-epoxy composite material appears best
suited for minimum weight loops. An experimental glass-epoxy loop for a
3300 N design load of only 11 kg mass is shown in Fig. 5 during fatigue test-
ing in 2 moving belt dynamometer (Ref. 12). In order t» minimize the amounts
of organic material on the Viking Lander because of possible interference with
the biological experiments, the high strength titanium alloy Beta III

was chosen. Its specific fatigue strength is 76% of S-Glass epoxy. The
manufacture of seamless loops by roll extrusion of forged ring blanks and
subsequent hot forming was found feasible.

Loop Stowage, Deployment and Protection from Landing Impact

A candidate concept for loop stowage and deployment which is compat -
ible with the existing Viking '75 aeroshell contours and the Viking '75 main
strut is shown in Figures 2 and 4, The two front loops are sandwiched be-
tween the carriage bottom and a landing pad (Figure 4a) to prevent local
deformations during the landing impact. By depressing the upper loop sec-
tions the stowed length is minimized and sufficient roll capability +19 deg)
is achieved for the carriage to adapt to the maximum expected slopes during
touchdown without interference between loops and struts. Under the maxi-
mum expected landing loads the main strut will be compressed to the position
shown in Figure 2 for the operational loops, which leaves at least 28 cm
ground clearance. Upon separation of the landing pads after landing the
loops will snap into their operational forim with straight upper and lower
sections. The front idler sprockets will swing forward and maintain perma-
nent contact with the loops.

The energy absorbing landing pads have been designed to surround the
lower loop sections completely during landing. Furthermore, the bottom .
surface of the carriage is contoured to closely match the loop shape in the
stowed position as shown in Figure 2. The Viking '75 landing leg design
loads are based on 200 g maximum vertical deceleration of the landing pads,
which is attenuated by the main struts to a maximum of 30 g for the lander
chassis by crushable honeycomb cartridges inside the main struts.

The preliminary landing pad design is based on the worst case condi-
tions illustrated in Figure 6 (provided by R.J. Muraca, NASA-Langley). The
face sheets at the bottom of the landing pads were assumed to distribute
point loads from rock impact over an area A_ = 470 cm2. The main strut
force versus stroke characteristics indicate that the average crush force
during the initial phase of the landing impact is F, = 4450 N. The total
energy to be absorbed by the landing pad to decelerate the mass my3 of leg 3
(below main strut No. 3) is then

2
(1 E, = 1/2 m, v +F_ x5
where xp is the stroke of the crushable landing pad. Neglecting the small
initial energy absorption in the main strut during the force buildup to F,, all
energy absorption then occurs in the landing pad with crush strength p or

(2) E; = A Px,, -
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Substituting (2) into (1) and solving for the required crush stroke yields for
my, = 15.4 kg:

2
- - Y o=
(3) x = l/2 mj v /(A p-F)) 4,2 cm .

The allowable crushing stroke is 70% of the pad's thickness. The re-
quired honeycomb thickness is therefore Xpe = 4.2/0.7 = 6 cm. The maxi-

mum deceleration is encountered for a flat landing with uniform crushing of ,
the full pad area. The selected crush strength and pad area must be suffi-
ciently low to limit the deceleration to 200 g. The maximum allowable pad
area A0 can be determined as follows: the maximum allowable pad load is
F =m_, g + F_ = 34,65 kN. For the selected honeycomb material with
o £3 "max a 2 2
crush strength p = 24.1 N/cm” the pad area should be A < Fo/p = 1438 cm”,
However, the projected pad area for full protection of both front loops is
A, =1768 cmz. Therefore the honeycomb must be 'checkerboarded'' leaving

1

A1 -Ao = 330 cm2 of voids or a slightly softer honeycomb material must be

found. 3imilar approximate calculations led to a required lateral pad thick-
ness of 0.9 cm to protect the loops from side impact loads.

Drive System and Power Requirements

The drive system design requires trade studies between light weight
and safe lubrication at the low temperature extremes. The present state
of the art in bearing and gear lubrication requires dry lubricants for safte
operation at -84°C. Since direct drive torque motors were ruled out due to
heavy weight, brushless dc motors with gear reducer were chosen as pri-
mary candidates for further study. The gear ratio was chosen to limit the
motor revolutions to 11 million over the operational life of the drive system.
A 30:1 high efficiency roller-gear reduction was selected, which forms an
integral part of the drive sprocket together with a brushless motor with park-
ing brake and an emergency disconnect clutch, The weight of the complete
drive sprocket/motor/gear/brake assembly is estimated at lese than 3.5 kg.

Extensive performance tests of elastic loop prototypes at NASA-MSFC
and at the U.S. Army Engineer Waterways Experiment Station (WES) (Ref. 8)
provide a sound data base to predict power requirements. The Lunar Soil :
Simulant in the loose air dry test condition is very close to the assumptions
made for Martian loess. The tests were performed for a wide range of
slope angies up to 38 deg. Test results are documented in normalized form
in Ref.8 and can be readily applied to specific vehicle characteristics. For
the mobile Viking Lander's ' weight on Mars of W = 2510 N the power require-
ments plotted in Figure 7 are predicted.

COMPARISON OF ROVER AND MOBILE
LANDEZR MOBILITY CHARACTERISTICS

During development of the 4-wheeled Lunar Roving Vehicle (LRV) ex-
tensive performance tests of wiremesh wheels had been conducted at the
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Waterways Experiment Station (WES) in Lunar Soil Simulant (Ref. 9). Since
the majority of the elastic loop tests were performed in the same facility in
identical soil conditions, the test results obtained for both concepts can be
directly compared.

Slope Climbing Capability

In Figure 8 (taken from Ref. 8) specific energy and slope climbing
ability are plotted for the LRV wheel and an elastic loop test unit
tested in identical soft Lunar Soil Simulant. Between 0 and 10 deg slope
angle wheels are found to require 30% more energy than elastic loops. For
steeper slopes wheel performance rapidly deteriorates even more., The
wheels spin out at 20 deg slope angle whereas elastic loops climb slopes up
to 36 deg in this soft soil with propulsive efficiency peaking near 30 deg

(Mpax = 80%). For a moderate 10 deg slope the efficiencies of wheels and

elastic loops are 45 and 639, respectively., This superior soft soil perform-
ance of elastic loops can be attributed to the reduced sinkage, reduced slip
and more uniform pressure distribution. The excellent traction of the loops
not only improves slope climbing but also adds maneuverability by good re-
sponse to pivot steering and braking commands.

Static Stability

Piggyback rovers are constrained in wheelbase and treadwidth by the
limited stowage space on top of the lander craft., Even the additional com-
plexity of a hinged chassis as proposed for the MBB rover (Ref. 3) results in
vehicle dimensions which are substantially smaller thir those of a mobile
lander. These differences in vehicle geometry are reflected in the static
stability limits plotted in Figure 9 for varying slope angles and assuming
an additional rock under the uphill wheels (or loup). The three widely spaced
lander legs provide exceptional static stability in roll,which, in general, is
more critical than pitch stability.

Obstacle Negotiation

Good obstacle climbing capability is a key factor in reducing the risk
of micsion failure in an automated rover mission when unforeseen hazards
are encountered. Furthermore, exceptioral obstacle performance reduces
the time and energy required to safely reach a given destination because
minor obstructions can be negotiated without bypass maneuvers. The ob-
stacle climbing of four-wheeled vehicles has been investigated in depth by
Kuehner (Ref.10) and more systematically by Rettig and Bekker (Ref. 1l).

Vertical Obstacle Climbing
For all four -wheeled vehicles with all wheel drive and near uniform
lnad dist. ‘bution the rear wheels limit the vertical step negotiation. In the
limiting condition (Fig. 10) the weight W, tangential and normal forces at

front and rear wheels are in equilibrium. For small chassis pitch angles 8
this results in the following equation

(4) [(l - UB) ¢+ #A]nina - [‘r— u +(7£:3 - l)b + A]cola = BuA
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where A =D/2s, Y =1+ pz)sl/us, which must be solved for a axd B, since

a = arcsin(l-2h/D) and § = arcsin(h/s) are functions of the wanted obstacle
height h, For the piggyback rover proposed by MBB (Ref. 3), Eq. (4) yields
a maximum vertical step height (assuming 4 =0,6) of h = 8.1 cm (a = 41.5
deg; B = 5.2 deg), whereas the solution for the smaller rover proposed by
MMC (Ref.2) ish =5.7cm (a =51.3 aeg; B = 5.4 deg), which must be con-
sidered insufficient in view of the poor knowledge about martian surface
details,

Obstacle heights of h = 26 cm were claimed in Ref. 3 without proof for
both rover designs. NASA-sponsored obstacle climbing tests with the three-
loop configuration of Figure 3 have shown (Ref,5) that three-loop vehicles
with pitch articulated loop suspensions as proposed for the mobile lander can
climb obstacles which are 64 and 85% of the loop length in forward and re-
verse direction (single loop trailing), respectively. Reducing these test re-
sults frem the test conditions (f(t = 0.8) to the assumed martian soil conditions
(1 = 0.6) the step heights decrease by 28% based on the analytical and experi-
mo=ntal results in Ref,5. In forward and reverse direction obstacle per-
formance is limited by the rear loop pair. For the present length of the rear
loops (L = 63 cm) the maximum step heights: hfwd =0.72x 0.64 x 63 = 29 cm;
hrev =0.72 % 0.85 x 63 = 39 cm result,which in the forward direction is con-
sistent with the planned ground clearance of 28 cm and allows for safe nego-
tiation of 22 cm high rocks expected iu the landing ¢ ~ea,

The major mass, size and performance data of the mobile lander and
piggyback rovers are summarized in Table 2.

CONCLUSIONS

The compact size, light weight and large footprint of elastic loop sus-
pensions was found to offer surface mobility for an entire planetary soft
lander of the Viking class without major modifications of lander or entry
system hardware. Compared with recent ''piggyback' Mars rover designs
the scientific value of a mobile lander mission is greatly enhanced because
the complete science payload is mobile and the full power, communications,
data processing and thermal resources of the lander are available for the
science instruments. The larger vehicle dimensions add stability and ob-
stacle climbing capability, Expected development cost is lower because
most existing Viking subsystems including scientific instruments, cameras,
communicutions, data, storage and handling and thermal control systems can
be used without modifications while a piggyback rover requires aeparate sub-
systems, which for the most part will differ from the existing lander versions.
The low weight required for lander mobilization should make the mobile
lander concept very attractive for a Mars sample return mission, since more
than one geological and ecological environment can be sampled, thereby
greatly cnhancing the scientific value of the samples collected for return to
earth.
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Table 1. Loop data for dual- and single-loop support of Viking lander legs

b
Configuration Overall loop Ground Contact Loop Vertical Mass

Length Width Pressuzre thickness SprmgEl
o em N/cm mm Rate kg
e N/cm
Two loops/leg 55 17 0.45 1.47 72 5.22
(2 loops)
One loop/leg 63 27 0.49 1.88 66 5.46
(1 loop)

®Based on 675 kg supperted mass cn Mars uniformly distributed over three
legs.

®Mass of loop(s) required per leg,including inner drive lugs and outer
grousers. Locp material: Titanium alloy Ti-4.55n-5Z4-11.5Mo (Beta III).

Table 2. Summary of major size, mass and performance characteristics
of rover and mobile lander designs compatible with Viking aero-

shell

Piggyback rover designs by Mobile lander design
MMC (Ref.2) MBB (Ref, 3)

Wheel base 60 cm 90 cm? 205 cm

Tread width 60 cm 94 cm? 235 cm

Total mass 108 kg 180 kg 675 kg

Mass of mobility system 50 kg

Mobile science payload 21 kg 55 kg 100 kg

Ground pressure 0.5 N/cm2 0.75 N/cmZb 0.47 N/cm?2

Ground clearance 22 cm 25 cm 28 cm

Max. obstacle height 5.7 em© 8.1 cmd 29 cm forward

for L = 0.6 39 cm reverse
Max, slope angle in 20 deg 20 deg 36 deg

Soft Soil Simulant®

‘aChassis requires folding for stowage inside Viking capsule.
PConsidered too high for safe soft soil mohility.
€Can be improved to 12.4 cm by forward shift of c.g. to sl/s = 0.35;
dhow“ver, front ground pressure then is 85% higher than rear.

Can be improved to 13.2 cm in same way and with same penally as (c).
®Based on NASA-sponsored soil Hin tests 'lefs, 8 and 9).
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Fig. 2 - Side view of typical front loop suspension in stowed, fully deployed
and cruise position.
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Fig, 3 - Sub-scale three-elastic-loop test vehicle with electric drive and
remote control demonstrated high degree of rough-terrain mobility
and maneuverability under NASA-sponsored test program,

a)

b)

Separation Nut ‘
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|
\ Landing Pad

(Crushable
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Fig.4 - Loop protection during landing by contoured carriage bottom
and crushable pad.
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Fig. 5 - Fiberglass-epoxy test loop during endurance test on moving belt
dynamometer (Ref. 12).

Worst Case:
v 3.35 m/s
h 1.22 m/s
Results In

v, = 6.1 m/s At Leg3
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Fig. 6 - Side view of worst case landing impact. Load peaks at leg
3 due to '""slap down'' motion after initial simultaneous impact of
legs 1 and 2 into maximum assumed slope.

JPL Technical Memorandum 33-777

i AR 23,( S uﬁwu;@g,‘.,m;;ﬁmg: A 5 et
‘

e

oY

23

ﬁ‘s.n
LS
.



e

Y5, | e

Bren

140 pee. 70

120

2 100 50
3 z
2 80 40=
b 5 .
2 o 30 T ,
[e] [}
a, =
40 20

Power at V = 10 m/h

20 10
e ’
0 5 10 15 20
Slope Angle (deg)

Fig, 7 . Total mobility power for mobijle lander jp Martian Joegg based opn
loose soj] tests (Ref, 8).

Notes: |, Assumeq efficicneies were =10 m/p
V> 120 m/h
n

. m high, ¢85 N loag) testeq
Simulant at WES (Refs, 8. 9); power number
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Fir. 9 - Static lateral stability boundaries for two four-wheeled rovers
and mobile lander as a function of slope angle and additional rock

under uphill wheels (or loops).
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Fig. 10 - Forces acting on four -wheeled rover with all-wheel drive in
critical condition for step obstacle climbing.
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